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1 Filtering, Linear Systems and Transforms Overview

Filter Implementation and Analysis

This section describes how to filter discrete signals using the MATLAB®
filter function and other functions in the Signal Processing Toolbox. It also
discusses how to use the toolbox functions to analyze filter characteristics,
including impulse response, magnitude and phase response, group delay,
and zero-pole locations.

Convolution and Filtering
The mathematical foundation of filtering is convolution. The MATLAB conv

function performs standard one-dimensional convolution, convolving one
vector with another:

conv([1 1 1],[1 1 1])
ans =
1 2 3 2 1

Note Convolve rectangular matrices for two-dimensional signal processing
using the conv2 function.

A digital filter’s output y(k) is related to its input x(%k) by convolution with its
impulse response h(k).

yiky = hik)+x(k) = zh[k —Dxily

=0

If a digital filter’s impulse response (%) is finite length, and the input x(%)
is also finite length, you can implement the filter using conv. Store x(k) in a
vector x, h(k) in a vector h, and convolve the two:

X = randn(5,1); % A random vector of length 5
h=101111]1/4; % Length 4 averaging filter
= conv(h,x);
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Filters and Transfer Functions

In general, the z-transform Y(z) of a digital filter’s output y(n) is related to
the z-transform X(z) of the input by

bily+bi2)z"1+ - +bin + 1)z"
all+ai@z"1+ - +aim+ 1™

iz = HzXiz2) = Xiz)

where H(z) is the filter’s transfer function. Here, the constants b(i) and a(i) are
the filter coefficients and the order of the filter is the maximum of n and m.

Note The filter coefficients start with subscript 1, rather than 0. This reflects
the standard indexing scheme used for vectors in MATLAB.

MATLAB stores the coefficients in two vectors, one for the numerator and
one for the denominator. By convention, MATLAB uses row vectors for filter
coefficients.

Filter Coefficients and Filter Names

Many standard names for filters reflect the number of a and b coefficients
present:

® When n = 0 (that is, b is a scalar), the filter is an Infinite Impulse Response
(ITR), all-pole, recursive, or autoregressive (AR) filter.

® When m = 0 (that is, a is a scalar), the filter is a Finite Impulse Response
(FIR), all-zero, nonrecursive, or moving-average (MA) filter.

e If both n and m are greater than zero, the filter is an IIR, pole-zero,
recursive, or autoregressive moving-average (ARMA) filter.

The acronyms AR, MA, and ARMA are usually applied to filters associated
with filtered stochastic processes.
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Filtering with the filter Function

It is simple to work back to a difference equation from the z-transform relation
shown earlier. Assume that a(1) = 1. Move the denominator to the left-hand
side and take the inverse z-transform.

yik)tagytk -1+ +a,  yk-m)= boxk)+boxik-1)+--+5b__ jxik-m)

In terms of current and past inputs, and past outputs, y(n) is

yiky = bixky+boxtk -1+ -+ 5 qxtk-n)-agylk-1)——a_  yk—n)

This is the standard time-domain representation of a digital filter, computed
starting with y(1) and assuming zero initial conditions. This representation’s
progression is

y(1) = byx(l)
¥(2) = byx()+ bgx(l)—agy(1)
¥(3)

boix(3)+ byxi2)+ bgx(l) —agy(2) —agy(1)

A filter in this form is easy to implement with the filter function. For
example, a simple single-pole filter (lowpass) is

b =1; % Numerator
a [1 -0.9]; % Denominator

where the vectors b and a represent the coefficients of a filter in transfer
function form. To apply this filter to your data, use

y = filter(b,a,x);

filter gives you as many output samples as there are input samples, that
is, the length of y is the same as the length of x. If the first element of a
is not 1, filter divides the coefficients by a(1) before implementing the
difference equation.
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The filter Function

filter is implemented as the transposed direct-form II structure, where n-1
is the filter order. This is a canonical form that has the minimum number of
delay elements.

xliml
bin b3} b2} Hl]
ER N S =1 T — -1 vim)
Ip-Llml z2(ml Ilm
—ain] —al3) —al2]

At sample m, filter computes the difference equations

yim) = biljx(m)+ zq(m -1}
zy(m) = b(2)xim)+ zglm — 1) —a(2)yim)

z, _glm) = bin-1x(m) +z,_qlm-— 1y —ain—1yyim)

z, _qlm) = bin)xim)—ain)y(m)

In its most basic form, filter initializes the delay outputs z,(1),i =1, ..., n-1
to 0. This is equivalent to assuming both past inputs and outputs are zero.
Set the initial delay outputs using a fourth input parameter to filter, or
access the final delay outputs using a second output parameter:

[y,zf] = filter(b,a,x,zi)

Access to initial and final conditions is useful for filtering data in sections,
especially if memory limitations are a consideration. Suppose you have
collected data in two segments of 5000 points each:

x1
X2

randn(5000,1); % Generate two random data sequences.
randn(5000,1);

Perhaps the first sequence, x1, corresponds to the first 10 minutes of data
and the second, x2, to an additional 10 minutes. The whole sequence is
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x = [x1;x2]. If there is not sufficient memory to hold the combined sequence,
filter the subsequences x1 and x2 one at a time. To ensure continuity of

the filtered sequences, use the final conditions from x1 as initial conditions
to filter x2:

[yl,zf] = filter(b,a,x1);
y2 = filter(b,a,x2,zf);

The filtic function generates initial conditions for filter. filtic computes
the delay vector to make the behavior of the filter reflect past inputs and
outputs that you specify. To obtain the same output delay values zf as above
using filtic, use

zf = filtic(b,a,flipud(y1),flipud(x1));

This can be useful when filtering short data sequences, as appropriate initial
conditions help reduce transient startup effects.
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Other Functions for Filtering

In addition to filter, several other functions in the Signal Processing Toolbox
perform the basic filtering operation. These functions include upfirdn, which
performs FIR filtering with resampling, filtfilt, which eliminates phase
distortion in the filtering process, fftfilt, which performs the FIR filtering
operation in the frequency domain, and latcfilt, which filters using a lattice

implementation.

Multirate Filter Bank Implementation

The function upfirdn alters the sampling rate of a signal by an integer ratio
P/Q. It computes the result of a cascade of three systems that performs the

following tasks:

¢ Upsampling (zero insertion) by integer factor p

¢ Filtering by FIR filter h

* Downsampling by integer factor q

w—]|P

FIR
H

1Q

For example, to change the sample rate of a signal from 44.1 kHz to 48 kHz,

we first find the smallest integer conversion ratio p/q. Set

d = gcd(48000,44100);
p = 48000/d;
q = 44100/d;

In this example, p = 160 and q = 147. Sample rate conversion is then

accomplished by typing

y = upfirdn(x,h,p,q)

This cascade of operations is implemented in an efficient manner using
polyphase filtering techniques, and it is a central concept of multirate filtering
(see reference [1] for details on multirate filter theory). Note that the quality
of the resampling result relies on the quality of the FIR filter h.
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Filter banks may be implemented using upfirdn by allowing the filter h
to be a matrix, with one FIR filter per column. A signal vector is passed
independently through each FIR filter, resulting in a matrix of output signals.

Other functions that perform multirate filtering (with fixed filter) include
resample, interp, and decimate.

Anti-Causal, Zero-Phase Filter Implementation

In the case of FIR filters, it is possible to design linear phase filters that,
when applied to data (using filter or conv), simply delay the output by a
fixed number of samples. For IIR filters, however, the phase distortion is
usually highly nonlinear. The filtfilt function uses the information in the
signal at points before and after the current point, in essence “looking into the
future,” to eliminate phase distortion.

To see how filtfilt does this, recall that if the z-transform of a real sequence
x(n) is X(2), the z-transform of the time reversed sequence x(n) is X(1/z).
Consider the processing scheme.

_ Time _ Time ¥ EET N
Xz)— Hiz] ——- Reverss [ Hiz] —»- Reverse ™ X(H(1/ZIHI(=)
Xi-1H(z) X1 -H L) - 1HL - 1H )

Image of Anti Causal Zero Phase Filter

When |z| = 1, that is z = ¢/, the output reduces to X(e/®) | H(e®) | 2. Given
all the samples of the sequence x(n), a doubly filtered version of x that has
zero-phase distortion is possible.

For example, a 1-second duration signal sampled at 100 Hz, composed of two
sinusoidal components at 3 Hz and 40 Hz, is

fs = 100;

t = 0:1/fs:1;

X = sin(2*pi*t*3)+.25*sin(2*pi*t*40);
Now create a 10-point averaging FIR filter, and filter x using both filter
and filtfilt for comparison:
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o°

b = ones(1,10)/10;

y = filtfilt(b,1,x);

yy = filter(b,1,x);
plOt(tsX7t7y:I"Istsyy7l:l)

10 point averaging filter
Noncausal filtering
Normal filtering

|
o°

o°

Both filtered versions eliminate the 40 Hz sinusoid evident in the original,
solid line. The plot also shows how filter and filtfilt differ; the dashed
(filtfilt) line is in phase with the original 3 Hz sinusoid, while the dotted
(filter) line is delayed by about five samples. Also, the amplitude of the
dashed line is smaller due to the magnitude squared effects of filtfilt.

filtfilt reduces filter startup transients by carefully choosing initial
conditions, and by prepending onto the input sequence a short, reflected piece
of the input sequence. For best results, make sure the sequence you are
filtering has length at least three times the filter order and tapers to zero on
both edges.

Frequency Domain Filter Implementation

Duality between the time domain and the frequency domain makes it possible
to perform any operation in either domain. Usually one domain or the other is
more convenient for a particular operation, but you can always accomplish

a given operation in either domain.
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To implement general IIR filtering in the frequency domain, multiply the
discrete Fourier transform (DFT) of the input sequence with the quotient of
the DFT of the filter:

n length(x);

ifft(fft(x).*fft(b,n)./fft(a,n));

This computes results that are identical to filter, but with different startup
transients (edge effects). For long sequences, this computation is very
inefficient because of the large zero-padded FFT operations on the filter
coefficients, and because the FFT algorithm becomes less efficient as the
number of points n increases.

For FIR filters, however, it is possible to break longer sequences into shorter,
computationally efficient FFT lengths. The function

y = fftfilt(b,x)

uses the overlap add method (see reference [1] at the end of this chapter)
to filter a long sequence with multiple medium-length FFTs. Its output is
equivalent to filter(b,1,x).
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Impulse Response

The impulse response of a digital filter is the output arising from the unit
impulse input sequence defined as

oy = 4 F n=1
=0 ae1

In MATLAB, you can generate an impulse sequence a number of ways; one
straightforward way is

imp = [1; zeros(49,1)];
The impulse response of the simple filter b=1and a=[1 -0.9] is
h = filter(b,a,imp);

A simple way to display the impulse response is with the Filter Visualization
Tool (fvtool):

fvtool(b,a)

Then click the Impulse Response button m on the toolbar or select
Analysis > Impulse Response. This plot shows the exponential decay
h(n) = 0.9n of the single pole system:

1-11
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Frequency Response

The Signal Processing Toolbox enables you to perform frequency domain
analysis of both analog and digital filters.

Digital Domain

freqz uses an FFT-based algorithm to calculate the z-transform frequency
response of a digital filter. Specifically, the statement

[h,w] = freqz(b,a,p)

returns the p-point complex frequency response, H i'—’JmJ, of the digital filter.

Bi1)+ b(2)e~19 + --- +hin + 1eJ@(n)

Hiesu) = : .
all)+al@)e 7+ -+ alm+ 1je~7elim

In its simplest form, freqz accepts the filter coefficient vectors b and a, and an
integer p specifying the number of points at which to calculate the frequency
response. freqz returns the complex frequency response in vector h, and the
actual frequency points in vector w in rad/s.

freqz can accept other parameters, such as a sampling frequency or a
vector of arbitrary frequency points. The example below finds the 256-point
frequency response for a 12th-order Chebyshev Type I filter. The call to freqz
specifies a sampling frequency fs of 1000 Hz:

[b,a] = cheby1(12,0.5,200/500);
[h,f] freqz(b,a,256,1000);

Because the parameter list includes a sampling frequency, freqz returns a
vector f that contains the 256 frequency points between 0 and fs/2 used in
the frequency response calculation.

1-13
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Note This toolbox uses the convention that unit frequency is the Nyquist
frequency, defined as half the sampling frequency. The cutoff frequency
parameter for all basic filter design functions is normalized by the Nyquist
frequency. For a system with a 1000 Hz sampling frequency, for example,
300 Hz is 300/500 = 0.6. To convert normalized frequency to angular frequency
around the unit circle, multiply by . To convert normalized frequency back to
hertz, multiply by half the sample frequency.

If you call freqz with no output arguments, it plots both magnitude

versus frequency and phase versus frequency. For example, a ninth-order
Butterworth lowpass filter with a cutoff frequency of 400 Hz, based on a 2000
Hz sampling frequency, is

[b,a] = butter(9,400/1000);

To calculate the 256-point complex frequency response for this filter, and plot
the magnitude and phase with freqz, use

freqz(b,a,256,2000)

or to display the magnitude and phase responses in fvtool, which provides
additional analysis tools, use

fvtool(b,a)

and click the Magnitude and Phase Response button on the toolbar or
select Analysis > Magnitude and Phase Response.



Frequency Response

Magnitude (dB) and Phase Responses
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freqz can also accept a vector of arbitrary frequency points for use in the
frequency response calculation. For example,

w
h

linspace(0,pi);
freqz(b,a,w);

calculates the complex frequency response at the frequency points in w for
the filter defined by vectors b and a. The frequency points can range from 0
to £m. To specify a frequency vector that ranges from zero to your sampling
frequency, include both the frequency vector and the sampling frequency
value in the parameter list.

Analog Domain

freqgs evaluates frequency response for an analog filter defined by two input
coefficient vectors, b and a. Its operation is similar to that of freqz; you can
specify a number of frequency points to use, supply a vector of arbitrary
frequency points, and plot the magnitude and phase response of the filter.
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Magnitude and Phase

MATLAB provides functions to extract magnitude and phase from a frequency
response vector h. The function abs returns the magnitude of the response;
angle returns the phase angle in radians. To extract the magnitude and
phase of a Butterworth filter:

[b,a] = butter(9,400/1000);
fvtool(b,a)

and click the Magnitude and Phase Response button on the toolbar or
select Analysis > Magnitude and Phase Response to display the plot.

Magnitude (d5) and Phase Responses

-160

S320

Magnitude (dB)
Phase (degrees

........ 430

......... E40

a0 i i i i i i i i i an
] 0.1 0.z 03 0.4 0.5 0E o7 0.G 04
Mormalized Frequency (< rad/sample)

The unwrap function is also useful in frequency analysis. unwrap unwraps
the phase to make it continuous across 360° phase discontinuities by adding
multiples of £360°, as needed. To see how unwrap is useful, design a
25th-order lowpass FIR filter:

h = fir1(25,0.4);

Obtain the filter’s frequency response with freqz, and plot the phase in
degrees:
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[H,f] = freqz(h,1,512,2);
plot(f,angle(H)*180/pi); grid

It is difficult to distinguish the 360° jumps (an artifact of the arctangent
function inside angle) from the 180° jumps that signify zeros in the frequency
response.

unwrap eliminates the 360° jumps:
plot(f,unwrap(angle(H))*180/pi);

or you can use phasez to see the unwrapped phase.

Delay

The group delay of a filter is a measure of the average delay of the filter as a
function of frequency. It is defined as the negative first derivative of a filter’s

phase response. If the complex frequency response of a filter is H l'f‘m-‘, then
the group delay is

_dBlw)
d

rg[LuJ =
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where 0 is the phase angle of H f'—’JmJ. Compute group delay with
[gd,w] = grpdelay(b,a,n)

which returns the n-point group delay, Tylw J, of the digital filter specified by
b and a, evaluated at the frequencies in vector w.

The phase delay of a filter is the negative of phase divided by frequency:

Biw)

BT

To plot both the group and phase delays of a system on the same FVTool
graph, type
[b,a] = butter(10,200/1000);

hFVT = fvtool(b,a, 'Analysis', 'grpdelay');
set (hFVT, 'NumberofPoints',128, 'OverlayedAnalysis', 'phasedelay"')

legend (hFVT)
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Zero-Pole Analysis

The zplane function plots poles and zeros of a linear system. For example, a
simple filter with a zero at -1/2 and a complex pole pair at 0.9e/2%(0.3) and
0.0e-f2mi0.8) ig

zer = -0.5;
pol 0.9*exp(j*2*pi*[-0.3 0.3]"');

To view the pole-zero plot for this filter you can use

zplane(zer,pol)

or, for access to additional tools, use fvtool. First convert the poles and zeros
to transfer function form, then call fvtool,

[b,a] = zp2tf(zer,pol,1);
fvtool(b,a)

and click the Pole/Zero Plot toolbar button on the toolbar or select
Analysis > Pole/Zero Plot to see the plot.



Zero-Pole Andlysis
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For a system in zero-pole form, supply column vector arguments z and p to
zplane:

zplane(z,p)

For a system in transfer function form, supply row vectors b and a as
arguments to zplane:

zplane(b,a)

In this case zplane finds the roots of b and a using the roots function and
plots the resulting zeros and poles.

See “Linear System Models” on page 1-22 for details on zero-pole and transfer
function representation of systems.
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Linear System Models

The Signal Processing Toolbox provides several models for representing linear
time-invariant systems. This flexibility lets you choose the representational
scheme that best suits your application and, within the bounds of numeric
stability, convert freely to and from most other models. This section provides
a brief overview of supported linear system models and describes how to work
with these models in MATLAB.

Discrete-Time System Models
The discrete-time system models are representational schemes for digital

filters. MATLAB supports several discrete-time system models, which are
described in the following sections:

¢ “Transfer Function” on page 1-22

e “Zero-Pole-Gain” on page 1-23

e “State-Space” on page 1-24

e “Partial Fraction Expansion (Residue Form)” on page 1-25

® “Second-Order Sections (SOS)” on page 1-26

e “Lattice Structure” on page 1-27

¢ “Convolution Matrix” on page 1-30

Transfer Function

The transfer function is a basic z-domain representation of a digital filter,
expressing the filter as a ratio of two polynomials. It is the principal
discrete-time model for this toolbox. The transfer function model description
for the z-transform of a digital filter’s difference equation is

-1, ... n
Yiz) = Eily+b5(2yz71+ - +5(n + 1iz~ X(z)

all)+a(iz-1+ - +alm+ 1z—™

Here, the constants b(i) and a(i) are the filter coefficients, and the order of the
filter is the maximum of n and m. In MATLAB, you store these coefficients
in two vectors (row vectors by convention), one row vector for the numerator
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and one for the denominator. See “Filters and Transfer Functions” on page
1-3 for more details on the transfer function form.

Zero-Pole-Gain
The factored or zero-pole-gain form of a transfer function is

F(z) = glz) _ g (z—gllniz—gid))---(z —gind)
plzy  (z-pl)iz-p(2))--(z-pin);

By convention, MATLAB stores polynomial coefficients in row vectors and
polynomial roots in column vectors. In zero-pole-gain form, therefore, the
zero and pole locations for the numerator and denominator of a transfer
function reside in column vectors. The factored transfer function gain % is a
MATLAB scalar.

The poly and roots functions convert between polynomial and zero-pole-gain
representations. For example, a simple IIR filter is

b =123 4];
a=1[1331];

The zeros and poles of this filter are

roots(b)

o)
I}

-0.7500 + 1.1990i
-0.7500 - 1.1990i
p = roots(a)

p:
-1.0000
-1.0000 + 0.0000i
-1.0000 - 0.0000i
k = b(1)/a(1)
k:
2

Returning to the original polynomials,

bb
bb

k*poly(q)
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2.0000 3.0000 4.0000

aa = poly(p)
aa =
1.0000  3.0000  3.0000 1.0000

Note that b and a in this case represent the transfer function:

9+3z0+422 9294322142

Hiz) = =
2 1432714322423 234322+3z2+1

For b =[2 3 4], the roots function misses the zero for z equal to 0. In fact, it
misses poles and zeros for z equal to 0 whenever the input transfer function
has more poles than zeros, or vice versa. This is acceptable in most cases. To
circumvent the problem, however, simply append zeros to make the vectors
the same length before using the roots function; for example, b = [b 0].

State-Space

It is always possible to represent a digital filter, or a system of difference
equations, as a set of first-order difference equations. In matrix or state-space
form, you can write the equations as

Axin)+ Buin)
Cxiny+ Duin)

xin+1)
yin)

where u is the input, x is the state vector, and y is the output. For
single-channel systems, A is an m-by-m matrix where m is the order of the filter,
B is a column vector, C is a row vector, and D is a scalar. State-space notation is
especially convenient for multichannel systems where input u and output y
become vectors, and B, C, and D become matrices.

State-space representation extends easily to the MATLAB environment. In
MATLAB, A, B, C, and D are rectangular arrays; MATLAB treats them as
individual variables.

Taking the z-transform of the state-space equations and combining them
shows the equivalence of state-space and transfer function forms:

Fiz)= Hiz)\Uiz), whereH(z)=CzI-AV1B+L
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Don’t be concerned if you are not familiar with the state-space representation
of linear systems. Some of the filter design algorithms use state-space form
internally but do not require any knowledge of state-space concepts to use
them successfully. If your applications use state-space based signal processing
extensively, however, consult the Control System Toolbox for a comprehensive
library of state-space tools.

Partial Fraction Expansion (Residue Form)

Each transfer function also has a corresponding partial fraction expansion or
residue form representation, given by

C1 [ 0 R — M) k(1 + k202 4 o+ kim —n + 1jzim )
alz)  1-p(1z~? 1- pln)z1

provided H(z) has no repeated poles. Here, n is the degree of the denominator
polynomial of the rational transfer function b(z)/a(z). If r is a pole of
multiplicity s,, then H(z) has terms of the form:

rp_,_rij+d o rUrs D
—plpzl (1-pjz1)? -1y

(1-pifz

The residuez function in the Signal Processing Toolbox converts transfer
functions to and from the partial fraction expansion form. The “z” on the end
of residuez stands for z-domain, or discrete domain. residuez returns the
poles in a column vector p, the residues corresponding to the poles in a column
vector r, and any improper part of the original transfer function in a row
vector k. residuez determines that two poles are the same if the magnitude of
their difference is smaller than 0.1 percent of either of the poles’ magnitudes.

Partial fraction expansion arises in signal processing as one method of finding
the inverse z-transform of a transfer function. For example, the partial
fraction expansion of

—4+8z71

Hiz) = =248z
U A By

is

b =1-4 8];
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a=1[16 8];
[r,p,k] = residuez(b,a)
r‘:
-12
8
p:
-4
-2
k =

[]

which corresponds to

-12 8
+
1+4=z-1 149221

Hiz) =

To find the inverse z-transform of H(z), find the sum of the inverse
z-transforms of the two addends of H(z), giving the causal impulse response:

hin) = =12(—-4 + 8(-2%", n=0,1,2,..

To verify this in MATLAB, type

imp = [1 0 0 0 0];

resptf = filter(b,a,imp)
resptf =
-4 32 -160 704 -2944
respres = filter(r(1),[1 -p(1)],imp) + filter(r(2),[1 -p(2)]1,imp)
respres =

-4 32 -160 704 -2944

Second-Order Sections (SOS)

Any transfer function H(z) has a second-order sections representation

-1 -2
buk+bmz +52kz
-2

L
o1 k=1a-|]k+ﬂ-1k3_1+ﬂ-2k3
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where L is the number of second-order sections that describe the system.
MATLAB represents the second-order section form of a discrete-time system
as an L-by-6 array sos. Each row of sos contains a single second-order section,
where the row elements are the three numerator and three denominator
coefficients that describe the second-order section.

by b11 bag agy aqq agq
s05 = byg byg bog agy aqg age

byp bqp bop @gp a1 2o

There are many ways to represent a filter in second-order section form.
Through careful pairing of the pole and zero pairs, ordering of the sections
in the cascade, and multiplicative scaling of the sections, it is possible to
reduce quantization noise gain and avoid overflow in some fixed-point filter
implementations. The functions zp2sos and ss2sos, described in “Linear
System Transformations” on page 1-32, perform pole-zero pairing, section
scaling, and section ordering.

Note In the Signal Processing Toolbox, all second-order section
transformations apply only to digital filters.

Lattice Structure

For a discrete Nth order all-pole or all-zero filter described by the polynomial
coefficients a(n), n = 1, 2, ..., N+1, there are N corresponding lattice structure
coefficients k(n), n = 1, 2, ..., N. The parameters k(n) are also called the
reflection coefficients of the filter. Given these reflection coefficients, you can
implement a discrete filter as shown below.
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FIR and IIR Lattice Filter structure diagrams

For a general pole-zero IIR filter described by polynomial coefficients a
and b, there are both lattice coefficients £(n) for the denominator a and
ladder coefficients v(n) for the numerator b. The lattice/ladder filter may be
implemented as

vl i vl wlj

K

ARMA autput

Diagram of lattice/ladder filter

The toolbox function tf2latc accepts an FIR or IIR filter in polynomial form
and returns the corresponding reflection coefficients. An example FIR filter
in polynomial form is

b =1[1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082];
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This filter’s lattice (reflection coefficient) representation is

=
I

tf2latc(b